Stem cells made by reprogramming patients’ own cells might one day be used as therapies for a host of diseases, but scientists have feared that dangerous mutations within these cells might be caused by current reprogramming techniques. A sophisticated new analysis of stem cells’ DNA finds that such fears may be unwarranted.
“We’ve shown that the standard reprogramming method can generate induced pluripotent stem cells that have very few DNA structural mutations, which are often linked to dangerous cell changes such as tumorigenesis,” said Kristin Baldwin, associate professor at The Scripps Research Institute’s Dorris Neuroscience Center and a senior author of the report, which appears in the October 7, 2011 issue of the journal Cell Stem Cell. For this study the Baldwin lab collaborated with a genomics and bioinformatics expert, Ira M. Hall, an assistant professor of biochemistry and molecular genetics at the University of Virginia who is co-senior author.
The induced pluripotent stem cell (iPSC) technique was first described in 2006. It requires the insertion into an ordinary non-stem cell of four special genes, whose activities cause the cell to revert to a state like that of embryonic stem cell. In principle, iPSCs may be used to repair diseased or damaged tissues, and because they are made from a patient’s own cells, they shouldn’t provoke an immune reaction. But recent studies have found unacceptably high levels of mutations in iPSCs derived from adult human cells. That has led to widespread suspicion that the reprogramming process is largely to blame…
Comments are closed.